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Abstract. The widespread adoption of information technology has fundamentally trans-
formed the way information is processed in the financial market. One such technological 
advancement is algorithm trading, which allows traders to develop sophisticated strate-
gies based on historical price data. This raises important questions: Do these algorithm 
trading strategies contribute to market instability? When do they yield profits for different 
market participants? To address these questions, we must move beyond the efficient mar-
ket hypothesis, as this theory would suggest that such strategies yield no profit due to 
market efficiency. Instead, we explicitly incorporate initial market mispricing into our 
analysis and develop a stylized continuous-time model of algorithm feedback trading to 
investigate market outcomes. Our model yields closed-form solutions, enabling us to 
assess the degree to which the price diverges from the efficient level. We discover that 
algorithmic trading, when combined with initial market mispricing, can lead to significant 
market volatility, resulting in financial bubbles and crashes. However, this scenario only 
occurs when there is overpricing and the algorithm traders collectively employ a strategy 
that enlarges the mispricing. Depending on the initial mispricing in the form of underpri-
cing or overpricing, different algorithm trading strategies (positive or negative) have dif-
ferent market impact, profitability, and policy implications.
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1. Introduction
Constant innovation and the use of information technol-
ogies (IT) have enabled the digital transformation of the 
financial market and have supported its participants in 
remaining competitive (Fan et al. 2000, Dewan and 
Mendelson 2001, Hendershott et al. 2021). One of the 
most prominent applications of IT in the financial mar-
ket is algorithm trading (Stoll 2006, Weber 2006, Lucas 
et al. 2009). Algorithm trading is the use of computers, 
mathematical models, and high-speed networks to 
automate the buying and selling of financial assets.

Algorithm trading is one of the earliest areas in which 
financial technology (FinTech) has an application in the 
financial market (Hendershott et al. 2021). Early firm- 
level studies examine the impact of IT on competition 
and market liquidity (Dewan and Mendelson 2001, 
Bakos et al. 2005). Following the wave of firm-level 
adoption of trading platforms, data-driven financial 
modeling quickly replaced the old way of trading 

(Clemons and Weber 1996, 1997, Weber 2006, Lucas et al. 
2009). Ever since the beginning of the internet, it was 
clear that, given its implications on information trans-
parency and information disintermediation (Clemons 
et al. 2002), the internet would play a significant role in 
changing the financial market (Fan et al. 2000). There is 
therefore increased need to understand how such tech-
nologies are used in reality and how they change the 
market. Dewan and Mendelson (1998) argue that due to 
the adoption of quantitative trading tools by various 
players in the market, there is a significant development 
in IT infrastructure investments and, as a result, higher- 
frequency trading. Mendelson and Tunca (2003) show 
that liquidity traders indeed can benefit from the infor-
mation available in such FinTech systems. Agarwal et al. 
(2017) and Shangguan et al. (2022) report that online 
searches and composite information processing can 
offer important stock return predictability implications. 
There is also a growing literature on the impact of IT on 
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the information environment for investors (e.g., Xu and 
Zhang 2013; Li et al. 2018; Havakhor et al. 2019a, b; Ge 
et al. 2021).

How does algorithm trading affect the equilibrium 
of the financial market? When are algorithm trading 
strategies profitable? We answer these questions in this 
study.

Each time when there is a financial market crash, 
there are discussions on how algorithm trading may be 
the culprit responsible for large market volatilities. The 
2020 financial market crash is no exception. During the 
short one-month period from February 19 to March 23, 
the S&P 500 index fell by 33.9%. Multiple media chan-
nels pointed fingers at algorithm trading. For example, 
Fortune magazine holds the opinion that algorithm trad-
ing programs can make bad stock market days even 
worse.1 The website MarketWatch.com wrote: “What’s 
driving the speed and severity of the bear market is the 
escalation of algorithmic trading, which is more preva-
lent than it was during the Great Recession in 2008.”2

Jarrow and Protter (2012) find that algorithm trading 
can disrupt financial market efficiency. Unlike arbitra-
geurs, who eliminate mispricing, algorithm traders can 
inadvertently create and exploit mispricing to the detri-
ment of regular investors. Mispricing therefore arises 
from the collective, independent actions of algorithm 
traders, coordinated through a shared signal.

So far, the answer is not clear. Hendershott et al. 
(2011) conduct one of the earliest empirical tests and 
show that algorithm trading can actually improve 
liquidity and enhance the informativeness of price 
quotes. In a follow-up study, Hendershott and Riordan 
(2013) show that algorithm trading consumes liquidity 
when the bid-ask spreads are narrow and supplies 
liquidity when the market has lower liquidity. Consis-
tent with these findings, Chaboud et al. (2014) find that 
algorithm trading can bring an improvement in price 
efficiency. Kirilenko and Lo (2013) offer an early review 
of the challenges and opportunities that algorithm trad-
ing brings to the financial industry, as well as its regula-
tors. Different from the accusations from the public 
media, these studies suggest that algorithm trading may 
contribute to the efficiency of the market. At the same 
time, some other works challenge this view. Weller 
(2017) finds that increased algorithm trading is associated 
with a decreased amount of information in prices. In 
other words, algorithm trading may reduce price infor-
mativeness at the same time when it translates informa-
tion into prices. Zhang and Zhang (2015) develop an 
analytical model and show that because algorithmic feed-
back trading does not bring additional information into 
the market, it cannot change the market in terms of the 
price process.

Establishing algorithm trading’s impact on financial 
market’s stability is a very challenging task because 
it is hard to fully control all factors that affect the 

relationship between algorithm trading and financial 
asset price changes. This problem is even more pro-
nounced when the market is undergoing severe price 
changes surrounding a financial crisis. In this study, we 
examine an analytical model to understand the effect of 
algorithm trading on market stability. The model is 
based on a framework frequently used in the literature 
to study financial market equilibria (Kyle 1985, Hong 
and Stein 1999, Zhang and Zhang 2015).

Different from prior works in the literature, we explic-
itly model mispricing in this study and examine how 
algorithm trading will interact with it. Mispricing is 
modeled as the divergence between the market price of 
a financial asset and its efficient market price. This for-
mulation can be considered as a relaxation of the effi-
cient market hypothesis and an extension of the prior 
works that are based on this hypothesis (Kyle 1985, 
Hong and Stein 1999, Zhang and Zhang 2015).

If the market is efficient, there cannot exist bubbles and 
crashes, because in an efficient market, all available infor-
mation is perfectly incorporated into the price at any 
point of time.3 When discussing the 1987 market crash, 
Malkiel (2003, p. 73) wrote: “ … the stock market lost 
about one-third of its value from early to mid-October 
1987 with essentially no change in the general economic 
environment. How could market prices be efficient both 
at the start of October and during the middle of the 
month?” To study whether and how algorithm trading 
may lead to bubbles and crashes, it is therefore necessary 
to relax the market efficiency assumption and allow the 
existence of mispricing. A model of algorithm trading 
without mispricing will degenerate to the scenario stud-
ied in Zhang and Zhang (2015).

In this study, we first explicitly model mispricing and 
then explore subsequent interplays between rational 
traders. With this framework, we examine mispricing’s 
impact on market outcomes and specifically offer in-
sights on the profitability of algorithm trading and 
show how market bubbles and crashes are created.

There are a lot of discussions on how mispricing com-
bined with algorithmic trading can lead to market melt-
downs. For example, a Washington Post article calls the 
combination of algorithm trading and mispricing “herd 
behavior on steroids.”4 The article argues that: “The 
truth is that the market is just as irrational and divorced 
from fundamentals on the way up as it is on the way 
down. It is in the nature of markets more so today than 
ever, as a result of the computerized high-frequency 
trading strategies of the Wall Street wise guys.” The arti-
cle attributes the volatile market outcome to algorithm 
trading and suggests that mispricing is inseparable 
from algorithm trading. Similarly, a Bloomberg article 
reports that Adair Turner, the chairman of the United 
Kingdom’s Financial Services Authority, believes “the 
rise of algorithmic trading may cause markets to be 
more volatile and securities to be mispriced.”5
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The International Organization of Securities Commis-
sions (IOSCO) Technical Committee released a report in 
July 2011 about algorithm trading’s impact on the finan-
cial system.6 This report viewed mispricing and algo-
rithm trading as the culprits of the Flash Crash of May 
2010. In the same year, the Commodity Futures Trading 
Commission (CFTC) published a paper sharing the 
same view (Kirilenko et al. 2011).

From a legal perspective, Yadav (2015) argues that 
algorithmic trading undermines price’s role in allocative 
efficiency through two key mechanisms. Firstly, the sys-
temic model risk in algorithmic markets, stemming 
from the inherent inability of preset programming to 
fully capture real-world trading nuances, creates signifi-
cant costs. This leads to an inefficient focus on short- 
term trading with limited capital allocation relevance. 
Secondly, the competitive dynamics of high-speed algo-
rithmic markets discourage participation of informed 
traders, traditionally crucial for informational contribu-
tions. As a result, according to the author, any small 
mispricing can be significantly enlarged by algorithm 
trading to move the market further away from the effi-
cient level.

Using simulated algorithmic trading to explore its 
influence on asset markets, Mukerji et al. (2019) find that 
statistical arbitrage can lead to and exacerbate mispri-
cing and cause significant divergence of price from fun-
damental values. Jain et al. (2021) challenge this view 
and show that an increase in algorithm trading leads to 
less significant and short-lived price deviations from 
exchange-traded funds‘ (ETFs’) net asset values. Algo-
rithm traders’ arbitrage strategies contribute to reducing 
these deviations, suggesting an enhancement in market 
efficiency. Additionally, algorithmic trading augments 
ETF liquidity. A recent survey examines emerging 
research on human-algorithmic trading interactions in 
experimental markets (Bao et al. 2022). The analysis 
shows that the profitability of algorithmic traders versus 
human traders hinges significantly on the underlying 
assets’ deviation from the fundamentals and the level of 
market inefficiency. Corgnet et al. (2023) examine a simi-
lar question and find that both limit-order and market- 
order algorithms contribute to better price efficiency 
and reduced volatility.

Mispricing can take many different forms and was 
widely reported in prior research. For example, Rashes 
(2001) reports that news about MCI Communications 
(then with a ticker symbol “MCIC”) had significant 
effects on Massmutual Corporate Investors, a fund traded 
on the New York Stock Exchange (NYSE) with the ticker 
symbol “MCI.” Similarly, Huberman and Regev (2001) 
document that a newspaper report of a previously 
known cure for cancer caused the stock price of a drug 
company to rise. Recently, because of the Coronavirus 
pandemic, as an online video-conferencing platform, 
Zoom Video’s (ticker symbol “ZM”) shares skyrocketed. 

However, investors confused an irrelevant company, 
Zoom Technologies (ticker symbol “ZOOM”), for Zoom 
Video and bid up Zoom Technologies’ price. The Securi-
ties and Exchange Commission (SEC) suspended Zoom 
Technologies’ trading to put a stop to this mispricing.7 In 
these examples, the prices were distorted for various rea-
sons and deviated from the efficient price. Stambaugh 
et al. (2012, 2015) construct a very effective mispricing 
measure based on 11 return anomalies previously re-
ported in the literature, offering empirical support to the 
institutional foundation of the existence of mispricing for 
our theoretical model.

Our paper is related to the efficient market hypothesis 
(EMH) and behavioral models of strategic decision 
making (Barberis et al. 1998, Fama 1998, Crawford 2013, 
Harstad and Selten 2013, Rabin 2013). Although the 
EMH is a useful modeling tool, previous research indi-
cates both theoretically and empirically that perfectly 
informationally efficient markets cannot exist (Gross-
man and Stiglitz 1980, Shiller 2003).

Shefrin (2008) proposes three different definitions for 
market efficiency. The first is predicated on the absence 
of risk-free arbitrage opportunities. The second hinges 
on the absence of risky arbitrage opportunities. The 
third requires prices to mirror fundamental values. 
There is an abundance of empirical research on market 
imperfections, yet theoretical studies are sparse.

We can classify the prior theoretical works into two 
groups. One pertains broadly to investor informedness, 
and the other concerns investor emotions.

In the first strand of literature, analytical models 
examine rational expectations equilibrium (REE). Gross-
man and Stiglitz (1980) critique informationally efficient 
market assumptions and expand the rational expecta-
tions model by incorporating an information cost. With 
this cost, they show that market cannot be efficient, and 
there must be some mispricing because some traders 
choose not to be informed. Later models support this 
result and demonstrate that uninformed noise traders 
can induce severe price volatility (Summers 1986, Cutler 
et al. 1990, Campbell and Kyle 1993). Brunnermeier 
(2001) offers a comprehensive survey of asset pricing 
models under asymmetric information. In this litera-
ture, mispricing arises as a result of noise trading (de 
Long et al. 1990, Madhavan and Smidt 1993, Guasoni 
2006).

The second strand of literature is related to behavioral 
finance and argues that irrational behavior is the source 
of mispricing. For example, Shiller (1981) and Leroy and 
Porter (1981) develop models of mispricing in the form of 
discrete time fads to argue that high volatility can exist 
even in efficient markets. Many later behavioral finance 
models are built on top of this logic to explain stock price 
variations (e.g., West 1988). Barberis et al. (1998), Daniel 
et al. (1998), and Odean (1998) develop theories of inves-
tor overconfidence. Such behavioral biases lead to 
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investor underreaction (overreaction) to information 
(news), thus resulting in market inefficiency.

Our model is different from these prior theoretical 
models in two very important ways: First, in our model, 
mispricing is a cause, not an effect. We examine the situ-
ation when the market has already deviated from effi-
ciency and study the outcome of the market. Second, in 
our model, mispricing is not a binary outcome, but a 
measure of the extent to which price deviates from what 
is implied by market efficiency.

We consider a level of price deviation from market effi-
ciency in a dynamic, continuous-time model, in the form 
of underpricing or overpricing. The equilibrium therefore 
does not rely on the commonly imposed assumption of 
semi-strong market efficiency. In the model, different 
investors have access to different levels of information: 
An informed trader receives a signal of the liquidation 
value of the asset and adopts a rational approach to maxi-
mize her profit. Algorithm trading adopts feedback- 
trading strategies and trades on past price changes.8

In this study, we focus on one particular type of algo-
rithm trading: feedback trading strategies that are based 
on past prices.9 Trend following leads to positive feed-
back, and contrarian strategies lead to negative feedback 
(Park and Sabourian 2011). In various financial markets, 
both institutional and retail investors embrace algorith-
mic trading tools. For example, recent research has 
shown that institutional investors’ algorithmic trading 
is associated with increased sensitivity of orders to past 
returns (Chordia et al. 2008). For completely unin-
formed investors, Rossi and Tinn (2014) argue that pure 
price-based trading can have positive profits as long as 
there exists uncertainty in whether a large trader is 
informed about fundamentals. In practice, websites, 
such as Quantopian.com, Interactive Brokers, and 
mobile apps, such as Robinhood and E*Trade Mobile, 
make it extremely easy for anyone with minimal finan-
cial or programming knowledge to develop price-based 
strategies and participate in the stock market.

Our model offers insights for two groups of stake- 
holders: an informed trader and the policy maker. First, 
for the informed trader, our model suggests that the pri-
vate information on liquidation value will always be 
realized at market clearance and that the strategy 
should not be influenced by either mispricing or the 
intensity of feedback trading. Market mispricing, how-
ever, creates profitable opportunities for the informed 
trader. As long as there exists market mispricing at any 
time, the informed trader always obtains higher profit 
than in the case of an efficient market. Second, for the 
policy maker, our results suggest that (1) no matter how 
price deviates from the efficient level, it will return to 
the liquidation value at the time of clearance. (2) Not all 
algorithm traders are bad for the market. Algorithm 
trading is a double-edged sword. It may reduce the bias 
to make the market more efficient or increase the bias 

and lead to even larger price deviation. Algorithm trad-
ing that reduces pricing bias is profitable. At the same 
time, algorithm trading that enlarges pricing bias will 
lose money. (3) When the asset is overpriced, even some 
reasonable level of feedback trading that enlarges mis-
pricing can induce a price that is hypersensitive to trad-
ing volume, therefore leading to arbitrarily large price 
movements in the form of bubbles and crashes.

We contribute to the literature in several ways: (1) 
Methodologically, we formulate a description of a mar-
ket that is not always efficient. Without such an assump-
tion, traditional models cannot be used to examine the 
profitability of algorithm trading. This opens doors for 
future work to examine other aspects of the financial 
market without the market efficiency assumption. (2) 
Theoretically, this study generates analytical results 
related to the formation of bubbles and crashes and 
derives theoretical implications on when algorithm 
trading can be profitable.

The remainder of this paper is organized as follows. 
Section 2 presents the theoretical model, with which we 
study the impact of market imperfections in the form of 
initial mispricing. Section 3 provides detailed equilib-
rium results for this economy, and we investigate the 
intensity of informed trading and the resultant market 
depth. Section 4 examines equilibrium price and studies 
the effects of mispricing and feedback trading. Section 5
examines how the profit gets contributed and redistrib-
uted by various parties. Finally, Section 6 concludes.

2. The Model
2.1. The Setup
We consider an informed-trading framework with a 
continuous-time game. There are three types of traders 
for an asset on the time horizon t ∈ [0, 1]: (1) a single, 
rational, risk-neutral informed trader; (2) a representa-
tive algorithmic trader,10 whose orders are composed of 
both a random noise term (the noise-trading compo-
nent) and the past prices of the risky asset (the feedback- 
trading component);11 and (3) competitive market 
makers, who set prices based on their observations on 
the aggregated orders in the market. The informed 
trader has unique access to the ex post liquidation value 
of the risky asset. The signal is the realization of a ran-
dom variable, ṽ, which is assumed to follow a normal 
distribution with a mean zero and a variance σ2

v.12 The 
market makers know the distribution of this random 
variable, but do not know its realization. The representa-
tive algorithmic trader does not have information on the 
distribution of the random variable. The feedback trad-
ing strategy depends on past price changes. This model 
setup is consistent with Kyle (1985), Glosten and Mil-
grom (1985), de Long et al. (1990), Hong and Stein 
(1999), and Zhang and Zhang (2015), among others. For 
easy reference, Table 1 contains the variable definitions.
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Competitive market makers set prices to clear the 
market. All uncertainty in the model is supported on 
a standard probability space (Ω,F , P). At any time t ∈
[0, 1), trading occurs in two steps. In the first step, the 
informed trader and the algorithm trader submit market 
orders by simultaneously choosing the quantities they 
will trade.13 When making the decision, the informed 
trader’s information consists of the private signal of the 
asset’s liquidation value and past prices. The informed 
trader does not observe current or future asset prices or 
the past, current, or future quantities traded by the algo-
rithm trader. Within this information environment, the 
informed trader adopts a trading strategy to maximize 
her profit. The algorithm trader cannot observe the liq-
uidation value of the risky asset. Similar to the model in 
Kyle (1985) and Zhang and Zhang (2015), there is a ran-
dom noise term in their orders. Given the vast number 
of potential strategies, we do not prescribe the feedback 
trading as either positive or negative.14 In the second 
step, the market makers set the price to clear the market.

The market is closed at time t � 1. Denoting the mar-
ket clearing price as P1, we allow this price to be poten-
tially different from the expected liquidation value of 
the asset, ṽ. That is, this formulation allows the possibil-
ity that the algorithm trader can dominate the market 
and distort the price, even at the time of market 

clearance. We later show, analytically, that P1 converges 
to the liquidation value of the asset ṽ.

2.2. The Informed Trader’s Order
We denote the order of the informed trader at time t as 
dXI(t). The informed trader’s cumulative profit at mar-
ket clearance can be written as

πI(1) �
Z 1

0
(P1�Ps)dXI(s): (1) 

This formulation departs from Kyle (1985) and Zhang 
and Zhang (2015), as P1 is not ex ante guaranteed to be 
equal to the liquidation value ṽ.

At any time t, the informed trader adjusts her order 
according to the difference between the current price Pt 
and her private signal on the liquidation value ṽ. The 
informed order is assumed as

dXI(t) � αt(ṽ�Pt)dt, (2) 

where αt > 0 is to be endogenously determined by the 
informed trader’s profit maximization problem. A 
greater αt is associated with a more aggressive adjust-
ment in response to the gap between the current price 
and the liquidation value ṽ. The informed trader can 
realize that the price may not converge to ṽ, but because 

Table 1. Variable Definitions

Variable Definition

t Continuous time. The market starts at t � 0 and clears at t � 1.
ṽ Exogenous liquidation value of the asset. It is assumed to be normally distributed with mean zero and 

variance σ2
v.

F t Available information to market makers up to time t.
σ2

v Exogenous variance (precision) of the liquidation value ṽ.
σ2

t Exogenous level of noise trading at time t.
βt Exogenous instantaneous feedback trading intensity at time t.
β̃(t) Cumulative feedback trading intensity during time period [0, t]. β̃(t) �

R t
0βsds:

β(t) Average feedback trading intensity during time period [0, t]. β(t) � 1
t β̃(t) �

1
t
R t

0βsds: We denote β ≡ β̃(1) �
R 1

0 βsds 
as the overall feedback trading intensity during the whole duration t ∈ [0, 1].

θ(·, ·) Market deviation reflected on price at time t. It is a continuous function of time t and β̃t, the cumulative 
intensity of feedback trading from time 0 to t. Endogenously determined.

ε Initial mispricing. It is given by ε � 1
θ(0, 0)� 1, with ε ∈ (�1,∞). It characterizes market imperfections that are 

independent of feedback trading.
Wt A one-dimensional standard Brownian motion. σtdWt indicates the noise introduced by uninformed traders.
dXU(t) Order submitted by the uninformed traders at time t.
dXI(t) Order submitted by the informed trader at time t.
Pt Price at time t. Endogenously determined.
δ(t) A measure of the deviation of Vt � E[ṽ |F t] from the liquidation value ṽ up to time t. Specifically, 

δ(t) � E[(ṽ �Vt)
2
|F t]. It is a very important measure of how much and how fast information gets 

incorporated into the prices. The smaller δ(t) is, the faster information gets incorporated into prices. 
Endogenously determined.

πI(1) Informed trader’s cumulative profit up to market clearance. Endogenously determined.
αt Informed trader’s aggressiveness in adjusting in response to the gap between price and liquidation value. 

Endogenously determined.
λt The change in price as a result of one unit of increase in total demand at time t. It is a measure of how 

sensitive the market price is with respect to demand. It is related to the concept of market depth, which is 
defined as 1=λt. Endogenously determined.

φ Exogenous feedback trading’s impact on mispricing.
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P1 is not ex ante known, the informed trader chooses her 
strategy based on ṽ.

2.3. Uninformed Traders’ Orders
The aggregate order of the algorithm traders at time t 
can be considered as

dXU(t) � βtdPt� + σtdWt, (3) 

where dPt� denotes recent changes in price just before 
time t, βt is the instantaneous aggregated feedback 
intensity at time t, Wt is a one-dimensional standard 
Brownian motion, and σt is a scaling factor that 
describes the magnitude of noise trading at time t.15 The 
second term on the right-hand side of the equation 
represents noise trading of uninformed traders. The first 
term models algorithmic feedback trading.

The feedback intensity, βt, is aggregately determined 
by the algorithm traders’ strategies. It may vary with 
respect to time t and can take a positive or negative value. 
There are a few reasons behind the exogeneity of this 
parameter: First, each feedback trader can take a poten-
tially different strategy, and there is no way for us to 
determine the individual feedback intensity of each mar-
ket participant. The Securities and Exchange Commission 
released a report and broadly classified four types of strat-
egies: passive market making, arbitrage, structural, and 
directional (Securities and Exchange Commission 2010). 
These strategies may rely on different sources of informa-
tion, may have different ways to react to past prices, and 
may have different trading objectives. Second, because 
the traders vary in their capability, many of the strategies 
are not optimal, and we cannot determine the optimal 
feedback intensity with a rational expectations frame-
work. Third, the individual strategies may be constantly 
changing. So, feedback intensity of each trader is a func-
tion of previous price changes and time. Overall, it is 
impossible for us researchers to determine all strategies 
for all participants in the market. If this variable were to 
be endogenized, we would have to make very strong and 
undesirable assumptions on feedback traders’ specific 
strategies. But the problem with such an approach is that 
βt is not optimal and should not be modeled with learning 
algorithms. There are at least two different reasons: (1) it 
is an aggregated measure with many individual feedback 
strategies, many of which are not optimal themselves; 
and (2) the objective of the paper is to examine how the 
market changes with respect to changes in βt. So, it is an 
independent variable and should not be endogenized. 
This way of modeling also leaves the maximum flexibility 
for the model to examine the comparative statics associ-
ated with βt. In other words, the exogeneity and unpre-
dictability assumption makes this variable more realistic.

When βt is positive (negative), the algorithm traders 
aggregately play a positive (negative) feedback strategy 
at time t. Based on the instantaneous feedback intensity, 
we can define the cumulative feedback intensity up to 

time t as β̃(t) ≡
R t

0βsds and the average feedback inten-
sity up to time t as β(t) ≡ 1

t β̃(t) �
1
t
R t

0βsds. We also denote 
β ≡ β(1) � β̃(1) �

R 1
0βsds as the overall feedback trading 

intensity during the whole duration t ∈ [0, 1].
There can exist many algorithm traders, each taking a 

different strategy. In Zhang and Zhang (2015), equations 
(1) and (2) show that such orders are additive and can be 
aggregated; therefore, the aggregated orders from all 
unformed traders can be regarded as one order submit-
ted by a representative algorithmic trader in the model.

2.4. Mispricing
The pricing rule of the market makers can be described by

dPt � λt[dXI(t) + dXU(t)], (4) 

where λt > 0 will be determined in the equilibrium. 
Equation (4) describes the market response to aggre-
gated demand and determines how fast the information 
can be incorporated into the prices. The parameter λt is 
a measure of market depth.16 Market depth determines 
the size of the order to move the price by one dollar. 
When λt is large, the market is considered to be shallow, 
and the price is sensitive to new orders. When λt is small 
in magnitude, the market is deep.

As a reference, we first consider an efficient market in 
the semi-strong sense. Price at time t should perfectly 
reflect information available up to that time, and price 
should take the form:

Pefficient
t � E[ṽ |F t], 

where {F t}0≤ t≤1 represents the information available to 
the market makers up to time t.17

In this study, we explicitly consider the existence of a 
certain market mispricing. We consider the following 
form of the price:

Pt � E[ṽ |F t]θ(·, ·), (5) 

where θ(·, ·) is a continuous function of time t, and β̃(t), 
the cumulative intensity of feedback trading from time 
0 to t. It will be endogenously determined from the 
equilibrium.18

The function θ(·, ·) is a mapping, from (1) time t and 
(2) cumulative feedback trading up to time t, to a scale 
factor that moves price.19 It enlarges or shrinks informa-
tion available up to time t. It represents a deviation from 
market efficiency in price. If θ(t, β̃(t)) � 1, it means that, 
up to time t, price at t perfectly reflects the information 
available up to t. Whenever θ(t, β̃(t))≠ 1, there exists 
mispricing. Specifically, if θ(0, 0)≠ 1, then it means that 
the initial price does not accurately reflect perfect infor-
mation available to the market up to time 0.

Equation (5) is the simplest form that captures both 
the information from liquidation value and the potential 
impacts from mispricing and algorithm trading at time 
t ∈ [0, 1]. It allows us to derive closed-form solutions 
that offer insights into how the algorithm trader affects 
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the equilibrium price of a risky asset, when the algo-
rithm trader makes money in the market, as well as the 
interactions between the informed trader and the algo-
rithm trader.

Our framework allows us to examine the process of 
price discovery. The initial mispricing can be understood 
from a few different perspectives. First, it can represent ini-
tial public offering (IPO) underpricing or overpricing 
(Loughran et al. 1994, Ritter and Welch 2002). IPO under-
pricing and overpricing refer to the increase or decrease in 
stock value from the initial offering price to the first-day 
closing price. This literature suggests that the IPO price can 
deviate substantially from the fundamentals on the first 
day of trading. Second, it is possible that the mispricing is 
not from the very beginning. If the market remains efficient 
until a certain time, then we can set that time as the begin-
ning of market deviation and let t � 0 at that point of time. 
Third, similarly, the market clearance does not necessarily 
mean the end of the time when the stock is delisted. It can 
be anytime when the market deviation is set back to the 
efficient level, and we can set t � 1 at that point of time. 
Overall, this paper aims to study, for t ∈ [0, 1], a complete 
cycle of how market deviation gets corrected.

This form builds a bridge to relate the clearing price, 
P1, and the liquidation value, ṽ: When the market is 
closed at time t � 1, P1 � ṽ ·θ(1,β): The clearing price is 
equal to the liquidation value if and only if the effect of 
cumulative impact of feedback trading over the whole 
period satisfies θ(1,β) � 1 for any β.

Based on this formulation, now, we introduce a mar-
ket deviation parameter, ε, to describe market initial 
imperfections that are independent of feedback trading.

This parameter gives us the level of the initial mispri-
cing at time 0. That is,

θ(0, 0) � 1
1 + ε , (6) 

where ε ∈ (�1,∞); ε�can characterize the initial devia-
tion from market efficiency. When ε � 0, we have 
θ(0, 0) � 1; then, the market is initially semi-strong effi-
cient. When ε≠ 0, the market is either underpriced 
(ε > 0) or overpriced (ε < 0). No arbitrage implies 
θ(·, ·) > 0 and ε >�1.

3. The Equilibrium
In this section, we first examine the informed trader’s 
strategy and then derive the closed-form solution of the 
deviation function θ(·, ·).

Theorem 1. In equilibrium, the informed trader’s strategy 
is

αt �
σt

σv(1� t)
:

Proof. All proofs are in the online appendix.
Interestingly, the informed trader’s equilibrium strat-

egy depends on neither feedback trading nor market 
mispricing.

The intuition of this result can be understood from 
the information set available to the informed trader. 
The informed trader does not know the exact intensity 
of feedback trading, and she does not need to learn 
about the deviation. In this situation, her best strategy 
is to choose αt to maximize her overall profit, given 
her knowledge of the liquidation value. This result is 
consistent with Zhang and Zhang (2015).

We next turn to examine the deviation function 
θ(·, ·). In the next theorem, we first obtain the general 
functional form that θ(·, ·) must satisfy, and then we 
discuss a special case examining the average feedback 
intensity in the time interval of trading.

Theorem 2. Function θ(·, ·) satisfies

θ t,
Z t

0
βsds

� �

�
1

1+ ε(1� t)φβ(t)
, (7) 

where φ�measures the impact of positive feedback trading on 
mispricing. φ�is a strictly positive constant.

This theorem gives us a number of important results.20

First, when the initial mispricing is zero, then time 
and level of feedback trading do not influence price 
deviation, and we always have θ(·, ·) � 1: This result 
suggests that if the market is initially semi-strong effi-
cient, then algorithm trading does not affect the price 
process in any way, and the price perfectly reflects all 
available information at any time t.

Second, no matter how feedback trading influences 
price, time t has the capability of fixing the deviation: 
When t is close to one, the deviation always disappears. 
Equation (5) therefore suggests that at the time of mar-
ket clearance (i.e., t � 1), P1 � ṽ for all β�and ε, which 
implies that no matter how aggressive the algorithm tra-
ders are and how severely the market initially deviates 
from the efficient market, the final price always con-
verges to the liquidation value ṽ. Note that P1 � ṽ does 
not rely on any particular feedback trading intensity. At 
the same time, it does not guarantee that the price 
always perfectly reflects all available information in the 
market at any time t < 1. The convergence is driven by 
the insider, and it happens with or without feedback 
trading.

Third, feedback trading’s effect on price only depends 
on the existence of initial mispricing ε. If ε � 0, then the 
market always remains efficient. At any point of time t, 
• When φβ(t) < 1—that is, in the cases of (1) positive 

feedback trading and φ < 1 or (2) negative feedback 
trading and φ > 1—market efficiency is increased with 
mispricing’s effect reduced;
• When φβ(t) > 1—that is, in the cases of (1) φ > 1 

and positive feedback trading or (2) φ < 1 and negative 
feedback trading—market efficiency is decreased with 
mispricing’s effect enlarged;
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• When φβ(t) � 1—that is, in the case of φ � 1, feed-
back trading has no impact on mispricing and does not 
influence market efficiency. In this paper, we do not 
consider this trivial case.

For simplicity, in the following part of this section, we 
only consider the case of φ < 1.21

Next, we derive results related to market depth. By 
using Equation (21) from the Appendix, we can derive

λt �
σvθ(t, β̃(t))

σt + σvβtθ(t, β̃(t))
, 

and plugging in Equation (7), we obtain the next theorem.

Theorem 3. Let β(t) be the average feedback intensity dur-
ing time period [0, t] and βt be the instantaneous feedback 
intensity at time t; then, we have

λt �
σv

σvβt + σt[1+ ε(1� t)φβ(t)]
: (8) 

For any initial mispricing ε, λt is a decreasing function 
with respect to the instantaneous feedback intensity βt. 
It decreases from infinity to σv

σt[1+ε(1�t)φβ(t)]
and to zero, as 

βt increases from a negative value (that makes the 
denominator be zero) to zero, then to positive infinity.

When ε > 0 (ε < 0), λt is an increasing (decreasing) 
function with respect to the average feedback intensity 
β(t). It increases (decreases) from zero (positive infinity) 
to σv
σvβt+σt[1+ε(1�t)] and to σv

σvβt+σt
, as β(t) increases from a 

negative value to zero, then to positive infinity.
λt is a decreasing function with respect to ε; it 

decreases from the left side of 1
βt 

to σv
σvβt+σt

, and to zero, as 
ε�increases from �1 to zero, and to positive infinity.

Interestingly, the instantaneous feedback intensity βt 
influences the λt directly. However, the influence of ini-
tial mispricing ε�on λt must be through the average feed-
back trading intensity β(t) up to time t. In other words, 
even if there is no initial mispricing, the market depth is 
affected by the instantaneous feedback intensity βt. But, 
if there does not exist initial mispricing, then the average 
feedback intensity β(t) over the period from zero to t has 
no impact on market depth.

Market depth is an important measure of liquidity. A 
liquid market is generally more efficient. Therefore, the 
results of Theorem 3 offer insights on how initial mispri-
cing and algorithm trading influence market efficiency. 
When φ < 1, for any level of initial mispricing (includ-
ing the case where there is no mispricing), the market 
becomes more liquid and more efficient with more posi-
tive instantaneous feedback trading. In general, positive 
instantaneous feedback trading increases market effi-
ciency, and negative instantaneous feedback trading 
reduces market efficiency. This analytical result is con-
sistent with the empirical findings of Hendershott et al. 
(2011).

The effect of average feedback intensity, on the other 
hand, depends on the existence of initial mispricing. If 
there is no initial mispricing, it cannot have an impact. 
When the market is overpriced (i.e., when �1 < ε < 0), 
the larger the initial mispricing (more negative ε), the 
less liquid the market. When the market is underpriced 
(i.e., when ε > 0), the larger the initial mispricing, the 
more liquid the market. Average feedback trading 
weakens both effects, and its impact becomes less signif-
icant when the time is close to market clearance. The 
intuition behind these results is that positive feedback 
trading can mitigate the effect of initial mispricing and 
speed up the convergence of the price to the liquidation 
value. Consequently, among the various algorithm tra-
ders, those who follow positive trading strategies, on 
average, are providing a service to the market to make it 
more efficient and more liquid.

We examine more detailed dynamics by looking at 
four special cases. 

1. Case 1: Semi-Strong Efficient Market (Figure 1)
If the market is initially semi-strong efficient (i.e., if 

ε � 0), then

λt �
σv

σvβt + σt
�

1
βt +

σt
σv

:

The effect of the average feedback trading intensity 
β(t) disappears when there is no initial mispricing. 
However, the instantaneous feedback intensity βt still 
affects λt.

This result suggests that the price stability at time t 
depends on (1) the instantaneous feedback trading’s 
intensity and (2) the relative strength of the two vari-
ance measures. The higher the feedback trading at cur-
rent time t, the deeper the market. That is, higher 
instantaneous feedback trading intensity leads to a 
more stable market. When the level of noise trading 
(σt) is high or when the uncertainty of the signal (σv) is 
low, the market is deeper for the same level of feedback 
trading. Intuitively, when the market is characterized 
by a higher level of noise trading or by a lower level of 
uncertainty of the liquidation value, the market is dee-
per and can accommodate higher levels of negative 
feedback trading.

2. Case 2: Effect of Average Feedback (Figure 2)
In order to investigate the effect of average feedback 

only, we assume that the instantaneous feedback inten-
sity βt � 0, but the average feedback intensity β(t) dur-
ing time period [0, t] is not zero, then

λt �
σv

σt[1+ ε(1� t)φβ(t)]
�

1
σt
σv
[1+ ε(1� t)φβ(t)]

:

This suggests that the average feedback intensity β(t)
during the time period [0, t] affects λt only through ini-
tial mispricing. Similar to the first case and intuitively, 
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the market becomes deeper when there is a higher level 
of noise trading or a lower level of uncertainty of the 
liquidation value. 

• When the market is initially underpriced (i.e., 
ε > 0), as β(t) increases from negative infinite to 
zero, and to positive infinity, λt increases from zero 
to σv
σt[1+ε], and to σv

σt
. Figure 2(a) shows that market 

depth reduces with the average feedback intensity 
in general. When it is closer to market clearance, 
the price reacts to orders more aggressively. Higher 

initial underpricing is associated with a deeper 
market. Negative feedback trading, in general, 
leads to a deeper market. In this case, because λt 
is bounded between zero and σv

σt
, the price cannot 

vary too much, and feedback trading cannot lead 
to any bubbles and crashes.
• For ε < 0—that is, when the market is ini-

tially overpriced—for any specific t and ε, there 
exists a negative β(t), such that λt equals positive 
infinity. Therefore, when β(t) increases from this 

Figure 1. (Color online) Case 1: Semi-Strong Efficient Market 

Notes. Solid line: σt
σv
� 1

2 : Dotted line: σt
σv
� 2: Dashed line: σt

σv
� 5:

Figure 2. (Color online) Case 2: Effect of Cumulative Feedback 

Notes. (a) Underpricing. (b) Overpricing. (a) Solid line: moderate underpricing and far from market clearance with σt
σv
� 1, ε � 0:2, and t � 0.5. 

Dotted line: moderate underpricing and closer to market clearance with σt
σv
� 1, ε � 0:2, and t � 0.8. Dashed line: higher underpricing and far from 

market clearance with σt
σv
� 1, ε � 5, and t � 0.5. Dashdot line: higher underpricing and closer to market clearance with σt

σv
� 1, ε � 5, and t � 0.8. (b) 

Solid line: moderate overpricing and far from market clearance with σt
σv
� 1, ε ��0:2, and t � 0.5. Dotted line: moderate overpricing and closer to 

market clearance with σt
σv
� 1, ε ��0:2, and t � 0.8. Dashed line: higher overpricing and far from market clearance with σt

σv
� 1, ε ��0:9, and t �

0.5. Dashdot line: higher overpricing and closer to market clearance with σt
σv
� 1, ε ��0:9, and t � 0.8.
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negative value to zero, and to positive infinity, λt 
decreases from positive infinity to σv

σt[1+ε(1�t)], and 
to σv
σt

. From Figure 2(b), we can see these results.
3. Case 3: Effect of Instantaneous Feedback (Figure 3)
In order to study the effect of instantaneous feed-

back, we assume that the average feedback intensity 
β(t) during the time period [0, t] is zero, but the instan-
taneous feedback intensity βt is not zero, then

λt �
σv

σvβt + σt[1+ ε(1� t)] �
1

βt +
σt
σv
[1+ ε(1� t)] :

This case is similar to Case 1, but with an additional 
term involving initial mispricing. Notice that for any ε, 
there exists a negative βt such that σvβt + σt[1+ ε] � 0. 
As βt increases from this value to zero, then to positive 
infinity, λt decreases from positive infinity to σv

σt[1+ε], 
then to zero. Figure 3 shows that the same level of 
instantaneous feedback intensity is associated with a 
deeper (shallower) market when there is initial under-
pricing (overpricing). A higher level of overpricing is 
associated with a less tolerant level of feedback trading. 
In Figure 3, the green line quickly goes to infinity when 
feedback trading is getting less intensified. In other 
words, when there is overpricing, feedback trading 
needs to be positive and maintain a high level. Other-
wise, a small change in order can lead to a significant 
change to price.

4. Case 4: Effect of Mispricing (Figure 4)
If there is no feedback trading, then the algorithm 

trader is just a noise trader (i.e., β(t) � βt � 0), and

λt �
σv

σt[1+ ε(1� t)] �
1

σt
σv
[1+ ε(1� t)] :

The effect of the initial mispricing depends on the 

relative strength of the two variance measures. Again, 
the result is different from that of Kyle (1985) and 
Zhang and Zhang (2015). When ε > 0, the asset is ini-
tially underpriced. In this case, initial mispricing 
increases market depth and, intuitively, makes it more 
difficult for order flows to move the price. Conversely, 
when ε�moves from zero toward �1, θ(t, 0) increases to 
infinity. In this overpriced case, the market becomes 
shallow, and the price becomes very sensitive to orders. 
The market can be extremely risky when ε�moves close 
to �1.

As can be seen from Figure 4, when there is no feed-
back trading, the market depth is affected by (1) the ini-
tial mispricing and (2) the relative levels of noise 
trading and uncertainty of the liquidation value. 
Underpricing is associated with a more stable market. 
When ε�moves from a positive value to �1, the market 
becomes thinner and creates opportunities for extreme 
price movements.

Based on these results, we can see that overpricing 
has a much more significant and detrimental impact on 
price than underpricing.

4. Equilibrium Price
In this section, we study the equilibrium price.

From the proof of Theorem 2, we have the stochastic 
differential equation for the equilibrium price:

dPt �
Vt

1� tθ(t, β̃(t))[1� θ(t, β̃(t))]dt + σvθ(t, β̃(t))dWt, 

where Vt � E(ṽ |F t).
We use β(t) to represent the average feedback inten-

sity in the time interval [0, t].22 Then, the above equation 

Figure 3. (Color online) Case 3: Effect of Instantaneous Feedback 

Notes. (a) Underpricing. (b) Overpricing. (a) Solid line: moderate underpricing and far from market clearance with σt
σv
� 1, ε � 0:2, and t � 0.5. 

Dotted line: moderate underpricing and closer to market clearance with σt
σv
� 1, ε � 0:2, and t � 0.8. Dashed line: higher underpricing and far from 

market clearance with σt
σv
� 1, ε � 5, and t � 0.5. Dashdot line: higher underpricing and closer to market clearance with σt

σv
� 1, ε � 5, and t � 0.8. (b) 

Solid line: moderate overpricing and far from market clearance with σt
σv
� 1, ε ��0:2, and t � 0.5. Dotted line: moderate overpricing and closer to 

market clearance with σt
σv
� 1, ε ��0:2, and t � 0.8. Dashed line: higher overpricing and far from market clearance with σt

σv
� 1, ε ��0:9, and t �

0.5. Dashdot line: higher overpricing and closer to market clearance with σt
σv
� 1, ε ��0:9, and t � 0.8.
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can be rewritten as

dPt �
Vt

1� t ·
ε(1� t)φβ(t)

[1+ ε(1� t)φβ(t)]2
dt+ σv

1+ ε(1� t)φβ(t)
dWt:

(9) 

In this equation, the first term on the right-hand side is a 
drift term, and the second is a diffusion term.

The price at time t can be given as

Pt � Vtθ(t, β̃(t)) �
Vt

1 + ε(1� t)φβ(t)
: (10) 

Clearly, the price perfectly reflects the liquidation value 
with all available information only when ε�is zero. Algo-
rithm trading’s impact depends on a nonzero ε: When 
there is no initial mispricing, algorithm trading does not 
play any role in the price. When initial mispricing exists, 
regardless of the sign of ε, when φβ(t) < 1—that is, in 
the cases of (1) positive feedback trading with φ < 1 or 
(2) negative feedback trading with φ > 1—algorithm 
trading reduces initial mispricing’s effect on price at 
time t. That is, φβ(t) < 1 moves Pt �

Vt

1+ε(1�t)φβ(t)
closer to 

Vt than when β(t) � 0. The intuition behind this result is 
straightforward: when φβ(t) < 1, algorithm trading 
plays a role similar to informed trading. No matter 
whether there is underpricing or overpricing, it will 
speed up the price correction process. This result offers 

important policy implications because although algo-
rithm trading may increase the price movement, our 
result suggests that sometimes it is in the right direction.

When φβ(t) > 1—that is, in the cases of (1) φ > 1 with 
positive feedback trading or (2) φ < 1 with negative 
feedback trading—algorithm trading enlarges the effect 
of mispricing and, therefore, decreases market effi-
ciency. Depending on the sign of ε, we can examine 
how the price deviates from predictions of the efficient 
market hypothesis. There are two cases: 
• Case 1: Underpricing (ε > 0). 

1. The drift term: From (9), the drift term is 
strictly positive. Function ε(1�t)φβ(t)

[1+ε(1�t)φβ(t)]2 reaches its 

maximum value 1
4 when ε(1� t)φβ(t) � 1, further 

when ε(1� t)φβ(t) > 1, ε(1�t)φβ(t)

[1+ε(1�t)φβ(t)]2 monotonically 

decrease with ε(1� t)φβ(t), and when ε(1� t)φβ(t)

< 1, ε(1�t)φβ(t)

[1+ε(1�t)φβ(t)]2 monotonically increase with 

ε(1� t)φβ(t).

For fixed ε�and t, we can have 
– If φ < 1,

lim
β(t)→�∞

ε(1� t)φβ(t)

[1+ ε(1� t)φβ(t)]2
� 0:

Figure 4. (Color online) Case 4: Effect of Mispricing 

Notes. Solid line: σt
σv
� 1

2, t � 0.2. Dotted line: σt
σv
� 1

2, t � 0.8. Dashed line: σt
σv
� 2, t � 0.2. Dashdot line: σt

σv
� 2, t � 0.8.
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– If φ > 1,

lim
β(t)→+∞

ε(1� t)φβ(t)

[1+ ε(1� t)φβ(t)]2
� 0:

So an increasing |β(t) | induces a reduction in the drift. 
Eventually, β(t)’s effect disappears when t approaches 
one.

2. The diffusion term: Because ε(1� t)φβ(t) > 0, 
the volatility of the price is always smaller than 
that in a semi-strong efficiency market. For fixed ε�
and time t, 

– If φ < 1,

lim
β(t)→�∞

σv

1+ ε(1� t)φβ(t)
� 0:

So a strong negative-feedback algorithm strategy will 
drive the price volatility to zero.

– If φ > 1,

lim
β(t)→+∞

σv

1+ ε(1� t)φβ(t)
� 0:

Again, a strong positive-feedback algorithm strategy 
will drive the price volatility to zero.

Put together, when the asset is underpriced, algo-
rithm trading is associated with moderate price 
movements.
• Case 2: Overpricing (ε < 0).
First of all, given the sign of ε, we always have 1+

ε(1� t)φβ(t) < 1: Note the price at time t is Pt �
Vt

1+ε(1�t)φβ(t)
: For no arbitrage, we require the denomina-

tor to be positive. So, we always have:

0 < 1+ ε(1� t)φβ(t) < 1:

Therefore, feedback intensity must satisfy the following 
relation: φβ(t) < � 1

ε(1�t). With this inequality and condi-
tion φβ(t) > 1, we know that 

– When φ < 1, average negative feedback 
intensity should satisfy

ln 1
�ε(1�t)

� �

ln(φ) < β(t) < 0:

– When φ > 1, average positive feedback inten-
sity should satisfy

0 < β(t) <
ln 1

�ε(1�t)

� �

ln(φ) :

Let β∗∗ � ln 1
�ε(1�t)

� �

ln(φ) . 

1. The drift term: From (9), the drift term is 
strictly negative, which implies that the price itself 
has the tendency to decrease to the efficient level Vt.

It is easy to see that when 1 < φβ(t) < � 1
ε(1�t),

ε(1� t)φβ(t)

[1+ ε(1� t)φβ(t)]2
<

ε(1� t)
[1+ ε(1� t)]2

< 0:

Again, the effect of algorithm trading depends on ε�
being nonzero.

2. The diffusion term: For an overpriced asset, 
the volatility of price is higher than the case with 
efficient market assumptions.

– When φ < 1 and the average negative feed-
back β(t) approaches β∗∗ from the right, σv

1+ε(1�t)φβ(t)

goes to infinity. In this case, the volatility of the 
price can be arbitrarily large, so bubbles and 
crashes emerge in the market.

– When φ > 1 and the average positive feed-
back β(t) approaches β∗∗ from the left, σv

1+ε(1�t)φβ(t)

goes to infinity. In this case, the volatility of the 
price can also be arbitrarily large, so bubbles and 
crashes emerge in the market.

The intuition behind these results related to negative 
feedback trading can be understood by examining 
Figures 2 and 4. Compared with underpricing, overpri-
cing has much higher risk of facing the problem of an 
illiquid market (with λ�going to infinity under some 
conditions). Without liquidity, a small change in price 
can lead to significant ups and downs of the market. 
Because the market is generally converging to the effi-
cient level, no matter how large the feedback trading is, 
any force going against this general trend (negative 
feedback trading is such a force) has the potential to 
lead to further market deviation.

We can plot how the price process evolves over time. 
Equation (10) shows the price as a function of time. We 
just need to derive Vt as follows:

Vt � V0(1� t) + ṽ · t� (1� t)
Z t

0

σv

(1� s)2
dWs, 

where Ws is a standard Brownian motion, and it intro-
duces some randomness to the trajectory. The four 
panels of Figure 5 show how price converges to the liq-
uidation value when φ < 1:23 upper left (underpricing, 
positive feedback trading), upper right (underpricing, 
negative feedback trading), lower left (overpricing, posi-
tive feedback trading), and lower right (overpricing, 
negative feedback trading). In all panels, the blue lines 
indicate the efficient cases with ε � 0. In all cases, the 
price converges to the liquidation value of ṽ � 1 at time 
t�1. With positive feedback trading, price convergence 
is much faster than the case of negative feedback trad-
ing. Negative feedback trading in an overpriced market 
creates bubbles and crashes, but, eventually, the price 
still converges to the fundamental value.

Zhang and Zhang: Mispricing and Algorithm Trading 
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Overall, feedback trading that corrects the initial mis-
pricing (i.e., φβ(t) < 1) can make the market more efficient 
and facilitate price discovery because it is consistent with 
insider trading and makes information more transparent. 
On the other hand, feedback trading goes against insider 
trading (i.e., φβ(t) > 1), makes information less transpar-
ent, and hinders price discovery, leading to increased 
deviation of the market away from efficiency.

These results generate important policy implications. 
Algorithm traders should not be blamed for market 
deviations. Our results show that only those “bad” tra-
ders who cannot correctly determine the price direction 
are causing trouble, and their impact is only pro-
nounced when there is market overpricing. Therefore, 
in an effort to protect investors, regulatory authorities 
should focus more on preventing such “bad” market 
participants from exacerbating market deviations, 
rather than regulating the whole market of algorithm 
traders.

5. Redistribution of Profit
Does algorithm trading increase or decrease the informed 
trader’s profit? When is algorithm trading profitable? In 

this section, we investigate the profit earned by the 
informed trader.

Theorem 4. The expectation of the profit earned by the 
informed trader during the whole period can be expressed as

E[πI(1)] �
Z 1

0
σtσv 1 + ε2(1� t)2φ2β(t)

[1 + ε(1� t)φβ(t)]2

" #

dt: (11) 

We can see that higher levels of noise trading σt are asso-
ciated with higher profit for the insider. At the same 
time, σv, as a measure of the insider’s information 
advantage, is associated with higher insider’s profit. We 
always have

ε2t(1� t)2φ2β(t)

[1 + ε(1� t)φβ(t)]2
> 0, 

for all β(t), ε≠ 0, and t ∈ (0, 1). This implies that initial 
deviation ε�always leads to more profit for the insider, 
no matter whether this deviation ε�is negative or 
positive.

Figure 5. (Color online) Price Trajectory 

Notes. ṽ � 1, V0 � 1, σv � 0.6. Upper left: underpricing and positive feedback with ε � 0:5 and β(t) � 1:2. Upper right: underpricing and negative 
feedback with ε � 0:5 and β(t) ��1:2. Lower left: overpricing and positive feedback with ε ��0:5 and β(t) � 1:2. Lower right: overpricing and 
negative feedback with ε ��0:5 and β(t) ��1:2. All solid lines have ε � 0.

Zhang and Zhang: Mispricing and Algorithm Trading 
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We can view the profit of the informed trader as a 
function of ε�and β:

f (ε, β) ≡ E[πI(1)] �
Z 1

0
σtσv 1 + ε2(1� t)2φ2β(t)

[1 + ε(1� t)φβ(t)]2

" #

dt, 

where β�denotes β(t), which may vary with time t, and it 
is not a constant.

Notice that f (0,β) �
R 1

0σtσvdt � f (0, 0) for all β. This 
is the case in Zhang and Zhang (2015), where there is 
no initial mispricing, and the market is semi-strong 
efficient.

Based on Equation (11), we can plot how insider’s 
profit changes over time in Figure 6, where φ < 1.

The profit accumulates over time. In the case of 
underpricing, the insider earns higher profit if the feed-
back is negative (dotted line versus solid line). With 
respect to overpricing, we find that (1) compared with 
the case of underpricing, the same level of positive feed-
back gives the insider higher profit (dashed line versus 
solid line); and (2) the highest insider profit is obtained 
when the market is overpriced and the feedback traders 
adopts negative feedback strategies (dashdot line).

5.1. Detailed Properties of the Function f(«,b)
In order to study the different effects of initial mispri-
cing ε�and the feedback intensity β(t), first, we investi-
gate the properties of the function f (ε,β). 

1. As a function of ε, f (ε,β) reaches its minimum 
value

f (0,β) � f (0, 0) �
Z 1

0
σtσvdt 

at ε � 0 for all functions β�because

∂f
∂ε
�

Z 1

0
σtσv

2ε(1� t)2φ2β(t)

[1+ ε(1� t)φβ(t)]3
dt;

when ε > 0, ∂f
∂ε > 0, this implies that for any positive 

ε > 0, f (ε,β) > f (0,β), and when ε < 0, ∂f
∂ε < 0, this im-

plies that for any negative ε < 0, f (ε,β) > f (0,β).
This shows that the initial market mispricing ε�

always brings higher profit for the insider than that of 
a semi-strong efficient market, no matter whether ε�is 
positive or negative. This result is intuitive: market 
deviation can be understood as trading opportunities 
arising from the market. The insiders are able to cap-
ture these opportunities to increase their profit.

Moreover, 
• In case of ε > 0,

lim
ε→+∞

f (ε,β) � 2f (0, 0):

This suggests that, with initial underpricing, the insi-
der’s profit as the result of initial mispricing has an 
upper bound.

Figure 6. (Color online) Insider’s Profit as a Function of Time 

Notes. Solid line: underpricing and positive feedback with ε � 2 and β(t) � 2. Dotted line: underpricing and negative feedback with ε � 2 and 
β(t) ��2. Dashed line: overpricing and positive feedback with ε ��0:9 and β(t) � 2. Dashdot line: overpricing and negative feedback with ε �
�0:9 and β(t) ��2.

Zhang and Zhang: Mispricing and Algorithm Trading 
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• In case of ε ∈ (�1, 0), under condition 1+
ε(1� t)φβ(t) > 0 for all possible β(t) and ε, f (ε,β)
may explode and can even go to infinity when 
β(t) makes 1+ ε(1� t)φβ(t) approach zero. Com-
bined with the results from the last section, we 
know that the insider’s profit is provided by the 
feedback traders whose trading strategies enlarge 
mispricing and make the price deviate more from 
the semi-strong efficient price. Specifically, when 
there is overpricing, this feedback trading can 
destabilize the market and lose a significant 
amount of money as a punishment by the market.

In summary, as ε�goes from �1 to zero and satisfies 
1+ ε(1� t)φβ(t) > 0 for all possible β(t) and ε, f (ε,β) de-
creases from positive infinity to f (0,β), its minimum 
value; then, as ε�goes from zero to positive infinity, 
f (ε,β) increases from f(0, 0) to 2f (0, 0).

These results imply that (1) the insider’s profit is 
higher when there exists initial mispricing ε�(compared 
with the case of semi-strong efficient market); and (2) 
compared with initial underpricing, initial overpricing 
can bring unbounded insider profit.

2. In order to study the effect of initial mispricing ε, 
we let β�� 0,24 at any time t ∈ (0, 1)

f (ε, 0) �
Z 1

0
σtσv 1+ ε2(1� t)2

[1+ ε(1� t)]2

 !

dt

� f (0, 0) +
Z 1

0

σtσvε2(1� t)2

[1+ ε(1� t)]2
dt:

This is an increasing function of |ε | . As ε�goes from �1 
to zero, and from zero to positive infinite, f (ε, 0) de-
creases from positive infinite to f(0, 0) and increases 
from f(0, 0) to 2f (0, 0). This result measures the contri-
bution of pure noise trading to the insider’s profit. 
f (ε, 0)� f (0, 0) �

R 1
0
σtσvε2(1�t)2

[1+ε(1�t)]2 dt is the additional contri-
bution of noise trading to the insider’s profit when 
there is initial mispricing.

3. Note that under condition 1+ x > 0, function x2

(1+x)2 

is decreasing when x < 0 and increasing when x > 0. 
Therefore, the minimum value is zero when x � 0. 
Based on this, we have 

• When φβ(t) < 1, for all possible ε,

lim
φβ(t)→0

f (ε,β) � f (0, 0):

This implies that the most aggressive feedback traders 
who reduce the mispricing and make the pricing close 
to semi-strong efficient behave similarly as insiders 
and can earn all profit caused by the initial mispricing.

• When φβ(t) > 1, 

– When the market is initially underpriced— 
that is, for positive ε,

lim
φβ(t)→+∞

f (ε, β) � 2f (0, 0):

– When the market is initially overpriced, 
with ε ∈ (�1, 0), under condition

1+ ε(1� t)φβ(t) > 0 

for all possible β(t) and ε, f (ε,β) can be very big and 
may go to infinity.

In summary, when the market is initially 
underpriced—that is, for positive ε, f (ε,β) increases as 
φβ(t) increases—this implies that feedback traders who 
enlarge the mispricing and make the price more devi-
ant from the efficient market price will contribute more 
to the insider’s profit. Specifically, as φβ(t) goes from 
zero to one, then to positive infinity, the profit f (ε,β)
increases from f(0, 0) to f (0, 0) +

R 1
0
σtσvε2(1�t)2

[1+ε(1�t)]2 dt, then to 
2f (0, 0),

In an initial overpriced market, as φβ(t) goes from 
zero to one, then to � 1

ε(1�t) from the left side, f (ε,β)
increases from f(0, 0), to f (0, 0) +

R 1
0
σtσvε2(1�t)2

[1+ε(1�t)]2 dt, then to 
positive infinity. This implies that the feedback traders 
who enlarge the mispricing and make the price more 
deviant from the efficient market price will contribute 
infinity to the insider’s profit.

5.2. Profit Decomposition
With the above results, we can further decompose the 
profit earned by the insider as
E[πI(1)] � f (0, 0) + [f (ε, 0)� f (0, 0)] + [f (ε, β)� f (ε, 0)], 

where the first term f(0, 0) is the profit earned by the 
insider from both feedback trading and noise trading 
when the market is semi-strong efficient. The second 
term [f (ε, 0)� f (0, 0)] is contributed by the noise trading 
component when there is initial mispricing, and the last 
term [f (ε,β)� f (ε, 0)] is contributed by the feedback 
trading component when there is initial mispricing in 
the market. We will discuss these terms one by one in 
detail. 

1. The profit contributed by both feedback trading 
and noise trading when the market is semi-strong effi-
cient is given by

f (0, 0) �
Z 1

0
σtσvdt:

This term is an increasing function of both the level of 
noise trading, σt, and the uncertainty in the liquidation 
value, σv. The intuition is: In a semi-strong efficient 
market, the insider’s profit is obtained from noise trad-
ing and the information advantage.

Zhang and Zhang: Mispricing and Algorithm Trading 
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2. The insider’s profit contributed only by the noise 
trading component when there is initial mispricing is 
given by

f (ε, 0)� f (0, 0) �
Z 1

0

σtσvε2(1� t)2

[1 + ε(1� t)]2
dt:

This function increases for ε > 0, decreases for ε < 0, 
and reaches its minimum value zero at ε � 0. 

• When the market is overpriced, with 
ε ∈ (�1, 0), this term may go to very large because 
[1+ ε(1� t)]2 can approach zero. The intuition is 
that the closer the time is to one, the insider has 
higher certainty that the price will go back to the 
fundamental value and the trading against noise 
traders will generate higher profit.
• When the market is underpriced, with ε > 0, 

we have 1+ ε(1� t)β(t) > 0 for all possible β(t) and 
ε. In this case,

lim
ε→+∞

Z 1

0

σtσvε2(1� t)2

[1+ ε(1� t)]2
dt �

Z 1

0
σtσvdt � f (0, 0):

In summary, as ε�goes from negative one to zero, this 
part decreases from the larger value (which is larger 
than f(0, 0)) to zero (its minimum value); then, as ε�goes 
from zero to positive infinity, this part increases from 
zero to f(0, 0).

The intuition is straightforward: the insider’s profit 
from mispricing is zero when there is no mispricing. 
When there is mispricing, the insider can always bene-
fit by introducing information into the market through 
trading. The profit comes from the insider’s contribu-
tion to market efficiency.

3. The insider’s profit contributed by the feedback 
trading component when there is initial mispricing can 
be given by

f (ε, β)� f (ε, 0)

�

Z 1

0
σtσv

ε2(1� t)2φβ(t)
�
1 + ε(1� t)φβ(t)

�2 �
ε2(1� t)2

[1 + ε(1� t)]2

" #

dt:

Because this is a zero-sum game, then the algorithm tra-
ders’ profit is �[f (ε,β)� f (ε, 0)]. 

1. For the feedback traders who correct the 
mispricing—that is, φβ(t) < 1,25

f (ε,β)� f (ε, 0) < 0:

Feedback trading in the cases of (1) positive feedback 
trading when φ < 1 or (2) negative feedback trading 
when φ > 1 that corrects the mispricing lowers insi-
der’s profit. This implies that, in a market with initial 
mispricing, those who reduce the mispricing and make 
the price close to the efficient market price will make a 
positive profit, on average, as a reward. This result 

suggests that the level of feedback that reduces mispri-
cing is positively associated with algorithm traders’ 
profitability. In other words, when the algorithm tra-
ders can correctly predict the direction of price, then 
they can cut a share of the profit from the insider. From 
the perspective of the market, the presence of such 
feedback traders makes the market more efficient.

2. For the feedback traders who enlarge the mispricing 
—that is, φβ(t) > 1,

f (ε,β)� f (ε, 0) > 0:

This suggests that algorithm traders in the cases of (1) 
φ > 1 with positive feedback trading or (2) φ < 1 with 
negative feedback trading strategies will lose money to 
the insider in the long run as a punishment which 
drives the price far way from the efficient market price.

In the situation of overpricing combined by (1) posi-
tive feedback trading when φ > 1 or (2) negative feed-
back trading strategies when φ < 1, the market depth 
parameter λ�can go to infinity, indicating an extremely 
thin market; then, even small orders can trigger large 
price movements. In this case, the insider has addi-
tional opportunities to make a higher profit. The green 
line in Figure 6 demonstrates that this part may gener-
ate extremely high profit for the insider.

It is important to understand that the direction of the 
price process eventually moves toward the liquidation 
value. So, the average intensity of feedback that satisfies 
φβ(t) < 1—that is, in the cases of (1) φ < 1 with positive 
feedback trading or (2) φ > 1 with negative feedback 
trading strategies—reflects the profitability of algorithm 
trading strategies.

As evidenced by Theorem 2, any mispricing will be 
eliminated in the end by the price discovery process. It 
follows that in a market with initial mispricing, algo-
rithm trading that reduces (enlarges) mispricing, on 
average, will be profitable (losing money) as a reward 
(punishment) for improving (reducing) efficiency. 
There exists plenty of empirical evidence to support this 
result: in algorithm trading, the momentum factor sug-
gests that stocks that have performed well in the past 
would continue to perform well (Jegadeesh and Titman 
2001). The contribution of our work is that we explain: 
In the presence of mispricing, the market is becoming 
more efficient over time with insider trading, so, on 
average, people who adopt a feedback strategy reduc-
ing the mispricing would make a profit. In a sense, (1) 
“positive feedback trading” when φ < 1 or (2) 
“negative feedback trading” when φ > 1 studied in this 
paper is a measure of algorithm traders’ capability of 
coming up with profitable strategies. In contrast, (1) 
“negative feedback trading” when φ < 1 or (2) 
“positive feedback trading” when φ > 1 indicate those 
who go against the fundamentals. If the asset is mis-
priced, algorithm trading in the case of (1) “negative 

Zhang and Zhang: Mispricing and Algorithm Trading 
16 Information Systems Research, Articles in Advance, pp. 1–20, © 2024 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
7.

18
9.

74
.2

06
] 

on
 1

9 
Fe

br
ua

ry
 2

02
4,

 a
t 1

8:
50

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



feedback trading” when φ < 1 or (2) “positive feedback 
trading” when φ > 1 can hinder the process for informa-
tion to be reflected in the price.

The feedback traders can change the informed trader’s 
profit if and only if the market has already initially devi-
ated from the semi-strong efficient market hypothesis. 
The informed trader always has (1) an informational 
advantage and, at the same time, (2) an extra mispricing 
advantage, regardless of the strategies that the algorithm 
trader takes (positive or negative). When the algorithm 
trader plays strategies that enlarge the mispricing—that 
is, (1) “negative feedback trading” when φ < 1 or (2) 
“positive feedback trading” when φ > 1—there is an 
additional opportunity for the informed trader to earn 
more profit from the feedback trading component. Mean-
while, although algorithm trading is at an informational 
disadvantage in the market, skillful algorithm traders by 
trading in the same direction with the informed trader 
can make a profit.

Our results also provide insights about learning in 
algorithm traders. Feedback traders who enlarge the 
mispricing—that is, in the case of (1) “negative feedback” 
when φ < 1 or (2) “positive feedback” when φ > 1—lose 
money in the long run in the process of the market 
becoming more efficient. If they are capable of learning, 
they will find that reducing mispricing feedback 
trading—that is, (1) “positive feedback” when φ < 1 or 
(2) “negative feedback” when φ > 1—is a more profitable 
strategy. When the market is composed of many such 
capable traders, there will be more feedback trading in 
the case of (1) “positive feedback” when φ < 1 or (2) 
“negative feedback” when φ > 1. Then, based on our 
results, we can expect the market to be more efficient, a 
desirable outcome for both the regulators and the market 
participants.

6. Conclusion
We present a model of algorithmic trading that incorpo-
rates initial mispricing, thereby relaxing the efficient 
market hypothesis and treating market efficiency as a 
continuous variable. We examine the market’s response 
to such deviations and the effects of algorithmic trading 
on the market and its participants. The decision maker, 
an informed trader, maximizes profit in the face of 
potential asset price deviations by gradually releasing 
the information into the market through trading. This 
model allows us to investigate the conditions for market 
price convergence or divergence.

Our study yields several analytical results: 
1. Initial mispricing is a necessary condition for the 

impact of algorithmic trading on price (Theorem 2).
2. The clearance price always converges to the liqui-

dation value at market clearance, but the price trajec-
tory may not follow the path of a semi-strong efficient 
market (see Figure 5).

3. We identify conditions leading to bubbles and 
crashes, showing that overpricing, combined with feed-
back trading that enlarges mispricing, has a more detri-
mental effect on market stability than underpricing (see 
Figures 2, 5, and 6 and Figures A.1 and A.2 in the online 
appendix).

4. We derive the profits of different market partici-
pants, showing that the informed trader earns more 
than in a semi-strong efficient market due to mispricing 
(see Figure 6). Noise traders lose more due to mispri-
cing, whereas feedback trading that reduces mispricing 
makes a positive profit, as it indicates the traders’ capa-
bility in generating alpha by following the informed 
trader.

5. Depending on whether the asset is underpriced or 
overpriced, different algorithm trading strategies may 
have different impacts on price process (Figure 5), 
informed trading profits (Figure 6), trading volume 
(Online Appendix A.1), and market depth (Online 
Appendix A.2).

We conclude that increased use of past-price-related 
algorithmic trading strategies based on big data and 
machine learning may increase market volatility, parti-
cularly in overpriced markets with feedback trading 
strategies that enlarge mispricing. Feedback trading 
that can mitigate the effect of initial mispricing is profit-
able with market deviation, whereas feedback trading 
that enlarges mispricing incurs more losses.

These results offer specific managerial implications 
for regulators and market participants.

For policy makers, it is important to understand that 
not all algorithm traders are bad for the market. Our 
results show that algorithm trading is a double-edged 
sword. It may reduce or increase market efficiency 
depending on (1) the direction of mispricing (i.e., over-
pricing or underpricing) and (2) whether the trading is 
in the right direction (i.e., leading to more or less price 
deviation). As a reward, algorithm trading that reduces 
pricing bias will be profitable, whereas algorithm trad-
ing that enlarges pricing bias will lose money as a pun-
ishment. The effect of feedback trading that enlarges 
mispricing depends on whether the market is under-
priced or overpriced. Significant price volatility can only 
occur in an overpriced market. When overpricing hap-
pens, it is important for the regulators to provide liquid-
ity to the market to avoid significant price fluctuations.

For the insider, any mispricing is associated with 
higher profit. Feedback trading that reduces mispricing 
decreases the profit, and feedback trading that enlarges 
the mispricing increases the profit. The aggregate effect 
depends on the aggregate feedback intensity. When 
overpricing and aggregate feedback that enlarge mispri-
cing result in an illiquid market, the insider can leverage 
their informational advantage to significantly increase 
profits, albeit at the risk of causing market bubbles and 
crashes.
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For feedback traders, the results suggest that even if 
feedback trading that enlarges mispricing may earn 
some profit in the short run, it loses money in the long 
run. Given the higher risk of trading in an overpriced 
market, feedback traders who enlarge mispricing and 
move price far away from the efficient level should be 
particularly careful in such a market with mispricing. 
Traders with self-learning capabilities should improve 
their strategies and aim to imitate the orders submitted 
by the insiders.

Finally, although the specific findings related to algo-
rithmic trading are intriguing in their own right, we 
posit that the methodological contributions of this 
study—namely, the formulation of mispricing—and the 
exploration of algorithmic trading in an imperfectly effi-
cient market could open new avenues in modeling how 
technology is transforming the financial market.
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Endnotes
1 https://fortune.com/2020/03/10/high-frequency-algorithmic-trading- 
stock-market-crash/.
2 https://www.marketwatch.com/story/algorithms-sped-up-selling- 
leading-to-the-fastest-bear-market-in-stock-market-history-2020-03-26.
3 The model in this paper also suggests that once mispricing is 
assumed away, there cannot exist bubbles and crashes. In other 
words, we show that mispricing is a necessary condition of extreme 
market volatility.
4 https://www.washingtonpost.com/news/wonk/wp/2018/02/07/ 
the-robots-v-robots-trading-that-has-hijacked-the-stock-market/.
5 https://www.bloomberg.com/news/articles/2012-04-19/algorithmic- 
trading-may-spur-volatility-mispricing-turner-says.
6 https://www.iosco.org/library/pubdocs/pdf/IOSCOPD354.pdf. 
IOSCO, established in 1983, unites global securities regulators and is 
acknowledged as the universal benchmark provider for the securi-
ties industry. The organization is devoted to creating, applying, and 
advocating for compliance with global standards in securities regu-
lation. IOSCO collaborates closely with the G20 and the Financial 
Stability Board (FSB) to advance the international regulatory reform 
agenda. The organization’s membership supervises over 95% of the 
world’s securities markets across more than 130 jurisdictions.
7 https://www.cnbc.com/2020/03/26/sec-pauses-zoom-technologies- 
as-traders-confuse-it-with-zoom-video.html.
8 As will be clear, we do not assume the direction of the feedback, 
and in the framework, the feedback trading strategies are time- 
variant. Because there is no predictable trend, other participants 
cannot trade against it. There can be many algorithm traders with 
different trading strategies, based on different information in the 
market. As an outsider, it is difficult to profit from so many differ-
ent strategies. We are able to focus on a representative agent 
because the orders can be aggregated together.
9 Algorithm trading can also be triggered by events. But because 
events are exogenous and cannot be predicted, we exclude this 
type of algorithm trading from this research. In our study, we 

would like to focus on how algorithm trading strategies feed 
on themselves (through feedback trading) and potentially create 
market instability.
10 There may be multiple algorithmic and nonalgorithmic traders, 
but the orders can be aggregated together. That is, if there are multi-
ple traders, with every trader adopting a different feedback strategy 
(can be positive, negative, or not reacting to price at all), then, in 
aggregate, the representative agent still has a feedback strategy. See 
endnote 13 for a more detailed explanation with mathematics.
11 Although there are many different kinds of algorithms in quanti-
tative trading, most of such trading models depend on observations 
of time, volume, and price. Momentum strategies and most factors 
used in Fama-French type of factor models (Fama and French 1992) 
are all based on various ways of examining past prices.
12 The zero mean assumption can be easily extended to a case with 
a positive mean to avoid negative asset values.
13 The case of traders submitting limit orders can be shown to yield 
similar results.
14 If there is no feedback trading, then the algorithm trader degener-
ates to the noise traders in Kyle (1985).
15 We can examine the orders from the uninformed traders in an 
aggregate manner because these orders are additive. Suppose there 
are m algorithm traders and n noise traders. Then, the orders from 
these uninformed traders at time t can be aggregated as dXU(t) �Pm

i�1 β
i
t · dPt� +

Pn
j�1 σjt · dWj

t, where (W1
t , : : : , Wn

t ) is a n-dimensional 
standard Brownian motion, which can be simplified to Equation (3) 
after defining βt ≡

Pm
i�1 β

i
t and σtdWt ≡

Pn
j�1 σjtdWj

t.
16 Market depth is formally defined as 1=λt.
17 Mathematically, {F t}0≤t≤1 is the natural filtration generated by 
the aggregate order process {XI(t) +XU(t)}t∈(0, 1), with F 0 � {Ω,φ}.
18 The intensity of the feedback trading is determined by the algo-
rithm traders according to past prices of the risky asset.
19 Although the function θ(·, ·) can be constructed as a multiplica-
tive effect, it can be easily shown that the results remain the same if 
it is introduced as an additive effect.
20 Note that βt is a function of t. β�is not a constant; it is the average 
feedback intensity of βt over the whole duration [0, 1].
21 For the case of φ > 1, we can follow a similar discussion.
22 Instantaneous feedback intensity βt can change over time. We 
only need to know the average feedback intensity during the time 
interval from zero to t to derive the following results.
23 For simplicity, we only plot the φ < 1 case.
24 That is, the cumulative feedback trading intensity β̃(t) equals 
zero for all t.
25 Note that here, β�represents the function β(t), which measures the 
average feedback trading intensity for the time duration from zero to t.
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